
AMTD
6, 7505–7533, 2013

Collocation
uncertainty in

atmospheric profiles

A. Fassò et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Atmos. Meas. Tech. Discuss., 6, 7505–7533, 2013
www.atmos-meas-tech-discuss.net/6/7505/2013/
doi:10.5194/amtd-6-7505-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Annales  
Geophysicae

O
pen A

ccess

Nonlinear Processes 
in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences
O

pen A
ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Discussions

This discussion paper is/has been under review for the journal Atmospheric Measurement
Techniques (AMT). Please refer to the corresponding final paper in AMT if available.

Statistical modelling of collocation
uncertainty in atmospheric
thermodynamic profiles

A. Fassò1, R. Ignaccolo2, F. Madonna3, and B. B. Demoz4

1University of Bergamo, Dalmine, BG, Italy
2University of Turin, Torino, TO, Italy
3CNR-IMAA, Tito Scalo, PZ, Italy
4Howard University, Washington, D.C., USA

Received: 2 August 2013 – Accepted: 12 August 2013 – Published: 20 August 2013

Correspondence to: A. Fassò (alessandro.fasso@unibg.it)

Published by Copernicus Publications on behalf of the European Geosciences Union.

7505

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/7505/2013/amtd-6-7505-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/7505/2013/amtd-6-7505-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 7505–7533, 2013

Collocation
uncertainty in

atmospheric profiles

A. Fassò et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

The uncertainty of important atmospheric parameters is a key factor for assessing the
uncertainty of global change estimates given by numerical prediction models. One of
the critical points of the uncertainty budget is related to the collocation mismatch in
space and time among different observations. This is particularly important for vertical5

atmospheric profiles obtained by radiosondes or LIDAR.
In this paper we consider a statistical modelling approach to understand at which

extent collocation uncertainty is related to environmental factors, height and distance
between the trajectories. To do this we introduce a new statistical approach, based
on the heteroskedastic functional regression (HFR) model which extends the standard10

functional regression approach and allows us a natural definition of uncertainty profiles.
Moreover, using this modelling approach, a five-folded uncertainty decomposition is
proposed. Eventually, the HFR approach is illustrated by the collocation uncertainty
analysis of relative humidity from two stations involved in GCOS reference upper-air
network (GRUAN).15

1 Introduction

While global availability of profiling measurements of atmospheric parameters is in-
creasing, full exploitation of these measurements is still far from being achieved. In fact
the lack of an extensive effort, at a global scale, aimed at coordinating the operation of
available measurement stations towards harmonized and traceable observations, un-20

certainty included, has hampered exploitation of the data. GRUAN (GCOS Reference
Upper-Air Network, www.gruan.org) is a network aiming at rectifying this issue in or-
der to provide traceable measurements of Essential Climate Variables (ECVs), namely
pressure, temperature, water vapour, wind and aerosol, with their uncertainty, over long
term period of time (GCOS-112, 2007). The quantification of the uncertainty budget is25

one of the key priorities for GRUAN (Seidel et al., 2011).
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Instrumental contribution to the error budget (random and systematic uncertainties)
have been investigated for various sensors, e.g. Raman lidars (e.g. Whiteman et al.,
2001) or weather radars (e.g. O’Connor et al., 2005). On the other hand, one of the
critical contributions to the uncertainty budget is related to the collocation mismatch in
space and time among pairs of sensors. Although these different measurements are5

assumed nominally collocated there is a real physical separation between their actual
measurement locations and timings, either they are both from ground based or one
from ground based and one from satellite observation platforms.

Estimates of the representativeness error resulting from the effects of small scale
turbulence have been performed in many cases, for example, for rawinsonde wind10

measurements (e.g. Frehlich and Sharman, 2004) or high-resolution radiosonde wind
shear (Houchi et al., 2010).

However, there is a need for flexible statistical modelling assessing jointly the dy-
namic impact of both the imperfect collocation of atmospheric observations and envi-
ronmental forcing factors on collocation uncertainty. The approach should be flexible15

enough to cover atmospheric processes characterized by regimes ranging from quasi-
linearity (e.g. horizontally homogenous atmosphere) to non-linearity.

Radiosondes provide one of the primary data sources for vertical atmospheric pro-
files (Immler et al., 2010), but they may be affected by uncontrolled drift once they are
launched (Seidel et al., 2011). Radiosonde data have been extensively used for a wide20

range of applications including intercomparison with ground-based and space-based
remote sensing systems, atmospheric model evaluations, and studies of atmospheric
variability. However, these studies have mainly assumed the radiosonde measurement
to represent the atmospheric conditions over a wider area, as if they came from a fixed
measurement location and neglecting the impact of their uncontrolled drift. In case25

of satellite validation, it is usually assumed that radiosondes are spatially collocated
with the satellite field of view. Representativeness error can be minimized only if the
validation is performed in homogeneous conditions. But quite often, the uncertainty
introduced by representativeness dominates the error budget of the validation experi-
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ment (e.g. Frehlich and Sharman, 2004). Uncontrolled radiosonde drift might also affect
the evaluation of model data where the problem is the representativeness of observa-
tions, i.e. these data should represent the range of conditions influencing the model
prediction.

Spatial collocation mismatch does not seem to play a big role in the radiance match-5

ing, due to large footprint characterizing these measurements. On the contrary, tem-
poral collocation and time interpolation are critical to achieve these results due to the
related vertical thermodynamic factors (Tobin et al., 2006).

The satellite validation community considers, as a priority, the availability of robust
collocation criteria that would increase the matches by a significant amount at an af-10

fordable cost due to data synergy. Appropriate collocation criteria are strongly required
to combine different measurements, to potentially reduce the overall uncertainty on
the atmospheric profile measurement (Tobin et al., 2006; Calbet et al., 2010). For ex-
ample, in the former paper, temporal collocation and time interpolation are critical to
achieve good results, although collocation does not seem to play a big role in radiance15

matching.
In this study, we aim at two objectives. The first is introducing a general statistical

modelling approach to understand the vertical profiles of collocation uncertainty for
any climate variable, in relation to environmental factors, altitude of measurement and
distance between trajectories. The second objective is developing a illustrative exam-20

ple based on relative humidity data from ground rawinsonde measurements, which
are made from two different locations at almost the same time. The case study is im-
portant because humidity is known to have forecast errors with large components at
small scales. To do this, we rely on the statistical methods known as functional data
analysis, which dates back to the eighties, see e.g. Ramsay and Dalzell (1991) or25

the primer of Ramsay and Silverman (2005). In the last decade these methods have
been increasingly developed and used in various scientific areas and especially in life
and environment observation. For example, in climatological studies Ruiz-Medina and
Espejo (2012) proposed spatial interpolation of functional ocean surface temperature
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and, in environmental ruling, Ignaccolo et al. (2013) proposed zoning according to func-
tional air quality data. Moreover, Sangalli et al. (2012) proposed functional regression
for complex spatial configurations which are important, for example, in the study of
hemodynamic forces, see Ettinger et al. (2013). In this paper developing the idea of
Ignaccolo (2013), we propose the heteroskedastic functional regression (HFR) model,5

which extends the standard functional regression approach to cover for non constant
functional conditional variance, as an effective approach to understand and decompose
the uncertainty of the atmospheric thermodynamic profiles.

The rest of the paper is organized as follows: in Sect. 2 a new statistical approach,
based on the HFR, is presented for modelling atmospheric thermodynamic profiles.10

Using this general modelling approach, conditional and global uncertainty profiles are
defined and the corresponding total uncertainties computed in Sect. 3. In Sect. 4, collo-
cation uncertainty is embedded in the HFR approach allowing a five-folded uncertainty
decomposition. Section 5 illustrates the method using data from two North American
stations involved in GRUAN, and focus on collocation uncertainty of relative humid-15

ity, which is interesting to model because is characterized by high vertical variability.
Section 6 gives concluding remarks.

2 Modelling vertical profiles

Let y denote the measurements of a physical quantity, e.g. an ECV, along a trajectory
through the atmosphere. A measurement at spatial point s and time t is denoted here20

by y (s, t), where s = (lat, lon,h), h ≥ h0 is the measurement height, t ≥ t0 is measure-
ment time, while t0 and h0 are launch time and height. The space-time vertical trajectory
can then be described by the parametric representation h → (sh, th) for h0 ≤ h ≤ h1. In
other words we represent data y (s, t) as vertical profiles or functions y (·) = y (h). Using
the functional data analysis (FDA) approach described e.g. by Ramsay and Silverman25

(2005), we consider a vertical profile as a single object described by a smooth function:
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µ(h), h ≥ h0.

According to standard measurement error decomposition, an observation profile, la-
beled by launch place and time (sj , tj ), j = 1, . . .,n, is given by a random function

yj (·) = µj (·)+bj (·)+εj (·)

where µ(·) is the “true” smooth profile, b(·) is the instrumental bias profile and ε(·) is the5

measurement error with zero mean, E(ε(·)) = 0, and variance given by Var(ε(·)) = σ2
ε(·).

If µs,t (·) or εs,t (·) are correlated over launching space (s) and time (t), we have space-
time functional data models. In this paper we assume that measurements, conditionally
on a set of forcing factors denoted by x(·), are independent random functions and we
focus on modelling their conditional mean and variance. In particular we are interested10

in modelling the effect of (functional) environmental factors x(·) by means of a functional
trend model given by

µ(·) = β(·)′x(·)+ω(·) (1)

where prime denotes matrix transposition. In Eq. (1) we assume that the trend is locally
linearly related to x but the global relation is not assumed linear.15

Moreover the error ω(·) is assumed to be an heteroskedastic component. The term
heteroskedasticity derived from the ancient Greek language, means varying variance
and, in this paper, we assume conditional heteroskedasticity, that is the conditional
variance, namely σ2

ω(·|x) = Var(ω(·)|x), is assumed to be a linear or log-linear function
of x . The former case is given by20

σ2
ω(·|x) = γ(·)′x(·) (2)

and the latter is given by

σ2
ω(·|x) = exp(γ(·)′x(·)). (3)
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The choice among these skedastic models is based on the data and both describe
the uncertainty unaccounted by the local linear component. So Eqs. (1) and (2) or (3)
define an heteroskedastic functional regression or HFR model.

In the sequel, when clear from the context, we will omit the function notation and,
for example, we will denote the functional model of Eq. (1) by µ = β′x +ω. Moreover,5

symbols β̂ and γ̂ denote estimates of β and γ based on historical data. In this paper
we will use an estimation algorithm based on penalized regression splines where the
smoothing parameters are chosen by restricted maximum likelihood estimation (REML)
as implemented in the R package mgcv (Wood, 2004, 2011). In particular, Ignaccolo
(2013) shows how HFR can be represented as a heteroskedastic semiparametric gen-10

eralized additive model (GAM), and how the corresponding two stages estimation is
obtained by iteratively using the mentioned penalized regression splines with REML
smoothing parameters.

3 Uncertainty profiles

Assuming no instrumental bias, b = 0, and constant measurement error variance, we15

consider here the conditional uncertainty profile given by the following conditional mean
squared error:

u(·|x) = E((y −µ)2|x) = σ2
ω(·|x)+σ2

ε . (4)

This equation gives the uncertainty profile for each value of the forcing factors set x at
height h, which is given by the conditional variance function σ2

ω(·|x) plus the measure-20

ment error σ2
ε which is constant.

Summarizing the effects of environmental factors x , we get the global uncertainty
profile U(·) = Var(y (·)). Its decomposition extends the heteroskedastic uncertainty de-
composition of Fassò et al. (2003) and is given by

U(·) = Uµ(·)+σ2
ε (5)25
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where, Uµ(·) = Var(µ(·)) defines the natural variability profile. Moreover, as discussed in
Appendix A1, the latter quantity is decomposed in three terms:

Uµ(·) = Ux (·)+Uω(·)+Uβ̂(·). (6)

In this formula Ux +Uω defines the environmental error. In particular Ux is the drift
uncertainty and is given by5

Ux (·) = β̂′(·)Σx (·)β̂(·), (7)

and Σx (·) = Var(x(·)) is the functional variance covariance matrix of x(·). In practice, this
error could be reduced by observing the forcing factors x(·). The second component of
the environmental error, namely Uω, cannot be reduced by observing x(·). This is the
average of the estimated skedastic function Eqs. (2) or (3), namely10

Uω(·) = Ex (σ̂2
ω(·|x))

with computation details shown in the Appendix A2. Finally the estimation uncertainty
or sampling error is given by

Uβ̂(·) = E(x(·)′Σβ̂(·)x(·))

where Σβ̂(·) = Var(β̂(·)|x) is the estimation functional variance covariance matrix of β̂(·).15

When the historical information used for estimation is large, Σβ̂ is small and Uβ̂ can be
neglected, otherwise this type of random error is irreducible.

Note that, in Eq. (5), the functional object U(·) gives the uncertainty profile at height
h irrespective of the particular value assumed by the forcing factors set x and corre-
sponds to the usual variance estimate given by20

S(h)2 =
1

nh −1

nh∑
j=1

(y (tj ,h)− y (h))2
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where y (h) is the mean of observations at height h and is usually computed grouping
the data in vertical bins h±∆h, see e.g. Immler et al. (2010).

In order to get a simple global uncertainty decomposition, we summarize the above
uncertainty profiles by integrating over the vertical profile. This is given by

U = Ux +Uω +U β̂ +σ2
ε (8)5

where U is the profile average, id est

U =
1

h1 −h0

h1∫
h0

U(h)dh

and Ux , U β̂ and Uω are similarly defined as integrals over the vertical dimension. Equa-
tion (8) gives a scalar uncertainty decomposition which is related to the usual concept
of total uncertainty.10

4 Collocation model

Suppose we are comparing two instruments, e.g. radiosondes, at the same height and
giving measurements y and y0 respectively. Following the stochastic model approach
of the previous section, we have

∆y (·) = y (·)− y0(·) = ∆µ(·)+∆ε(·). (9)15

In this formula ∆µ = µ−µ0 is the collocation drift and ∆ε = ε−ε0 is the collocation
measurement error, with Var(∆ε) = σ2

ε +σ2
ε0 = 2σ2

ε .

From a practical point of view the observed collocated profiles y (·) and y0(·) are not
observed exactly at the same heights h, while µ(·) and µ0(·) are continuous functions
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and ∆µ(h) may be easily computed for every height h. Moreover we assume that the
collocation drift is an heteroskedastic functional regression model

∆µ(·) = β0 +β(·)′x(·)+ω(·)

where β0 is the constant component of the collocation bias, and it is a identifiable
coefficient since no instrumental bias has been assumed in the previous section. In5

particular, using a centered design, with E(x(·)) = 0, the collocation bias is given by
E(∆y ) = E(∆µ) = β0 and the natural collocation uncertainty is properly defined and
decomposed as follows:

U∆µ = E((∆µ)2) = β2
0 +Ux +Uω +Uβ̂.

Note that the first term β2
0 can be eliminated by simple collocation calibration as shown10

in the following application section.

5 Beltsville case study

Data used in this work consist of radiosounding profiles of pressure, temperature, hu-
midity and wind measured at the Howard University research site in Beltsville, Mery-
land, USA (39.054◦, −76.877◦, 88 ma.s.l.), which is also a GRUAN site, and the US15

National Weather Service (NWS) operational site located in Sterling, Virginia, USA
(38.98◦, −77.47◦, 53 ma.s.l.).

These two sites, being separated by about 50 km only, are selected because of their
relatively close proximity representing a similar climate regime. Moreover, they would
serve a good example of using one GRUAN research site to understand a non-GRUAN20

site, where knowledge can be transferred to a larger network represented by NWS.
Beltsville soundings are based on RS92-SGP sondes, manufactured by Vaisala Inc.,

while Sterling uses the Radiosonde Replacement System (RRS), build by Lockheed
Martin Sippican and referred hereafter as LMS6 sonde. Differences in the vertical
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sounding of the atmosphere between the two sensor types are known. In dry regions
of the troposphere, it has been reported amply that relative humidity derived from Mark
IIA (LMS6 sonde) shows substantial errors. This limitation has been reported by Black-
more and Taubvurtze (1999) to be a result of errors in calibration, sensor hystere-
sis, and sensor response time. They also report that at low temperatures, the time5

response slows significantly resulting in large relative humidity errors. A lidar-based
study of these variations was reported by Adam et al. (2010) that reached similar con-
clusions. During the latest WMO intercomparison of high quality radiosonde systems
(Nash et al., 2010), the RS92 version tested has shown systematic errors of less than
2 % in relative humidity and random errors of about 5 % from the surface to the lower10

stratosphere, whereas the LMS6 exhibited significant biases in the upper troposphere
and layers above. Moreover, the LMS6 sensor did reveal a day-night difference but
significant only in the upper troposphere, see Miloshevich et al. (2006).

Most of the sonde-to-sonde or otherwise comparisons reported in the literature are
a result of multi-payload sonde launches where two or more sondes are tethered to15

a single balloon to minimize the atmospheric variability (commonly assumed to be
zero). These types of comparisons come mainly from a coordinated and an organized
and intensive field campaign, see Miloshevich et al. (2006). These intensive operations
tend to be expensive, are held less frequently, and do not offer a climatically representa-
tive data across seasons and climates. As a result, the data and opportunity for building20

statistics is usually limited and cross-instrument and cross network knowledge transfer
is limited.

The Beltsville–Sterling radiosonde flights are launched on separate balloon pay-
loads, are operated by different operators, are different instruments and are sampling
the atmospheric profile with some variability. Quantifying the latter is a major issue.25

Traditionally, a simple averaged ensemble comparison as shown in Fig. 1 is done. The
time-height matched, difference between two data pairs from the Beltsville–Sterling
flights is averaged to show temperature comparisons. The temperature profile differ-
ence of sondes launched from these two sites within a 3 h window did not show that
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large of a difference. As can be seen from the figure, the temperature difference (stan-
dard deviation) was well within about a percent. As expected, the water vapor mixing
ratio (gkg−1) varied greatly for the same sondes throughout the tropopause, above
about 2 km. Mid-tropospheric mean differences of about fifty percent were recorded.
Alternatively, comparison of the column integrated water vapor amounts between these5

two stations revealed correlation coefficients of 0.95 or better. The difference in these
comparative plots is a result of the measurement location mismatch, instrument qual-
ity, and statistical sampling of the atmospheric variability. These types of “standard”
statistics plots, while important in understanding the overall characteristics of the atmo-
spheric state variables, cannot be used to do quantitative contribution of the different10

error components. The statistical “tool-kit” described here has quantitative description
and separation of the different error components as its goal. Note also that despite the
performance limitations of the RRS, we proceed with using the Beltsville–Sterling data
in our study here to demonstrate the efficacy of the statistics developed.

Following the outcome of the mentioned WMO intercomparison, for this study, we15

selected 32 pairs of vertical profiles in the range 100–10 000 m launched between
July 2006 and September 2009. A flight from Beltsville was matched to Sterling if
launch time was within 3 h. For each flight, we consider data profiles of relative humidity
(rh, in %), water vapor mixing ratio (mr), pressure (p), temperature (t), measurement
calendar time, flight duration (in sec), wind vector (u,v ), height a.s.l. (h) and coordi-20

nates (lat, lon). The different natural variability and collocation mismatch may be ap-
preciated in Fig. 2, where water vapor mixing ratio, relative humidity, wind and temper-
ature data are plotted. The collocation mismatch, plotted as the time-height matched
difference-data, for relative humidity and pressure is plotted in Fig. 3, which shows
quite a strong variability for humidity at all altitude levels without an apparent simple25

pattern. Hence it is challenging for HFR model trying to explain this strong variability,
which is assumed to be a cumulative contribution of errors from the instrument overall
performance and water vapor spatial variability arising from the drifts shown in Fig. 4.
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Note that, the depicted distances between the collocated profile trajectories result to
be between 45 and 95 km.

In the rest of this section we model the data about collocation uncertainty of relative
humidity in Beltsville radiosondes as a function of corresponding rh level in Sterling as
well as: water vapor mixing ratio, temperature, measurement calendar time, flight dura-5

tion, wind and coordinates from both collocated radiosondes which are considered as
explanatory factors. The resulting collocation error analysis corresponds to forecasting
the single rh sensor rather than all radiosonde ECV’s. In particular, since we use also
the collocation error of mixing ratio, ∆mr, the heteroskedastic component (Eq. 3) of this
HFR model describes the variability of relative humidity for fixed water vapour content10

in dry air mass.
In Ignaccolo (2013) it is described in some details the statistical process of model

identification and validation which involved fitting and testing a large number of alter-
native models for various combinations of different covariates. Note that, to avoid scale
effects and facilitate interpretation, the functional covariates x(·) have been standard-15

ized so that the total profile average is zero and the total profile variance is unity.
The final estimated model for the collocation error includes relative humidity and

vapour from Sterling radiosondes (rh0 and mr0) and the difference in vapour (∆mr)
while the other covariates related to the rest of the atmospheric information as well as
time, space and distance were excluded for this dataset. This is given by20

∆rh(·) = 3.37
(0.15)

+ β̂1(·)rh0(·)+ β̂2(·)mr0(·)+ β̂3(·)∆mr(·)+ ω̂(·)
(σω)

+∆ε(·)
(0.90)

(10)

where the standard deviations of the corresponding quantities are given in the brack-
eted subscripts. The beta functions are plotted in Fig. 5 with 95% confidence bands and
show the stable influence of rh0 on the collocation drift, which hints at an approximately
linear relation, ceteris paribus. Moreover, the increasing behaviour of β̂3 compensates25

for the sharp decrease of mr shown in Fig. 2. It is worth observing that, after accounting
for the above covariates, the collocation drift does not depend on the distance of the
paired trajectories. The intercept term β̂0 = 3.37 characterizes the constant collocation
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bias between Beltsville and Sterling radiosoundings, and could be used for adjusting
collocated measurements in practice.

With an adjusted determination coefficient R2 = 0.885, this model misses only
11.5 % of the collocation uncertainty which is covered by σ2

ω(·). The latter is estimated
by the functional regression model applied to the squares of first order model functional5

errors ω̂2 = (µ−β̂′x)2. In doing this we find that the collocation 2nd order uncertainty of
relative humidity depends on pressure (p0), temperature (t0) and relative humidity (rh0)
in Sterling radiosondes, difference in pressure (∆p), longitude (∆lon), water vapour
(∆mr) and wind (∆u,∆v ). This gives the functional log-linear model given in Eq. (11)
whose γ-functions are given in Figs. 6 and 7. Note that the Est-West distance ∆lon is10

important especially at lower altitudes, say below 3000 m, that is inside the boundary
layer, where the variability of water vapour is higher. North-South direction did not enter
the model and this is consistent with both the marked trajectory anisotropy shown by
Fig. 4 and prevailing wind direction.

logω2(·) = 1.6
(0.26)

+ γ̂1(·)p0(·)+ γ̂2(·)t0(·)+ γ̂3(·)rh0(·)+ γ̂4(·)∆p(·)+ γ̂5(·)∆lon(·)

+ γ̂6(·)∆mr(·)+ γ̂7(·)∆u(·)+ γ̂8(·)∆v (·)
(11)15

The model given by Eqs. (10) and (11) is used to compute the uncertainty budget of
Eqs. (5) and (8). In particular, Fig. 8 clearly shows that the major part of the uncertainty
is related to the observed atmospheric conditions as described by Eq. (10). Moreover
we can see that the environmental error Uω is smaller inside the boundary layer so the
environmental trend µ has a greater explanation capability at these altitudes.20

It is worth noting that, after fixing the atmospheric conditions as in Eq. (10), the
collocation drift does not depend on the distance between paired trajectories. Never-
theless the conditional uncertainty of Eq. (11) depends on the distance along parallels
as mentioned above. In other words, after adjusting for the other environmental factors,
the distance cannot be used as a correction factor for the relative humidity collocation25

error but it is a determinant of the collocation uncertainty. Moreover, for these stations,
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the distance along meridians is not a key factor for relative humidity collocation uncer-
tainty.

Taking averages of uncertainty profiles, Table 1 shows the role of the various com-
ponents in the uncertainty budget for these data. The major component is given by the
reducible environmental error which is related to water vapour in Sterling and to the5

collocation difference of water vapour content in dry air mass as shown by Eq. (10) and
Fig. 5. Observing that this collocation difference of water vapour content in dry air mass
is a combination of the short term variability of water vapor and the sensor response
to that variability, it is instructive to find this known fact through purely statistical model
formulations.10

The second component is the irreducible environmental error, which has been shown
to partly depend on distance along parallels. Moreover it can be observed that the

“measurement error” σε = 0.9 and estimation uncertainty,
√

U β̂ = 0.7 are quite small.
Last but not least, a simple constant bias correction for these data would reduce the
global collocation uncertainty by about 4 %.15

6 Conclusions

In this paper we presented a new and general statistical method for defining and com-
puting a detailed uncertainty budget of the collocation error in atmospheric vertical
profiles. It is based on an extension of the classical functional regression model able to
cover for hereoskedasticity. This model based approach allows us to decompose global20

uncertainty in five different components, namely constant (adjustable) bias, reducibile
and irreducible environmental errors, sampling error and measurement error. Moreover
the conditional uncertainty may be computed for any environmental conditions enabling
a deeper insight in the problem.

Although the method is quite general and data driven, for the considered colloca-25

tion data from two stations 52 km faraway, we found out that the mismatch on relative
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humidity has an adjustable constant bias amounting to 4 % of the global collocation un-
certainty. Moreover it turn out that the collocation error is related to physical quantities
and, in principle, it could be reduced by auxiliary information.

The proposed method is self-assessing in the sense that it is able to consider the
information content of the data for the model and to assess the size of the sampling5

error with respect to the other uncertainty components.

Appendix A

This appendix considers some mathematical details about uncertainty computations of
Sect. 3 and the uncertainty decomposition of Eqs. (5) and (6). To do this, we simplify10

the functional notation µ = µ(·)and observe that, in practice, µ and ω are estimated on
suitable historical data by µ̂ and ω̂ respectively.

A1 Mean estimation and global uncertainty

In this section we focus on µ and the heteroskeadstic structure of ω is ignored. Writ-
ing µ̂ = β̂′x and µ = β̂′x +e, we observe that, under suitable conditions, approximate15

orthogonality and unbiasedness hold, that is E(µ̂e) ∼= 0 and E(µ̂|x) = β′x respectively.
Hence the well known two stage variance formula entails

Var(µ) ∼= Var(µ̂)+Var(e)
∼= E(Var(µ̂|x))+Var(E(µ̂|x))+Var(e)

20

now, for the first term of the right hand side, we have

E(Var(µ̂|x)) = E(Var(β̂′x |x)) = E(x ′Var(β̂|x)x) = Uβ̂

while, for the second term, we have that

Var(E(µ̂|x)|β) = Var(β′x |β) = Ux
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which in practice is computed for β = β̂ and Σx in Eq. (7) is suitably estimated on the
historical data. For example, under LS estimation, we have

Uβ = σ̂2
ωx ′(X′X)−1x

where X is the functional design matrix.

A2 Conditional variance estimation and global uncertainty5

In the case of linear heteroskedastic model (Eq. 2), according to conditional het-
eroskedastic literature (see e.g. Chatfield, 1995), we write

ω2 = η2(γ′x + ζ )

where η is a zero mean, unit variance and symmetric random variable independent
on x and ζ . This motivates the assumptions we made in this paper on ω, namely10

E(ω|x) = 0 and E(ω2|x) = γ′x . Now by simple algebra, we write

ω2 = γ̂′x + (η2γ − γ̂)′x + ζ .

Using this expression and approximate unbiasdness of γ̂ it follows that

E(ω2|x) ∼= γ′x

and15

Var(ω) = γ′E(x)

which in practice is computed for γ = γ̂ and E(x) as the historical mean f the covariates.
Similarly in the log-linear case, we have

Var(ω|x ,γ) = E(exp(γ′x))

and using a second order expansion of exp((γ − γ̂)′x) we get20
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Var(ω|γ) ∼=
1
2

E(exp(γ′x) · x ′Var(γ̂|x)x)

which in practice is computed for γ = γ̂.
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Table 1. Collocation Uncertainty budget for relative humidity (∆rh) in Beltsville–Sterling, using
HFR model (Eqs. 10–11).

Source of uncertainty U U%

√
U

Natural variability ∆µ 318.7 17.9
Bias (adjustable) β2

0 11.6 3.6 % 3.4
Environmental Error (reducible) x 268.6 84.3 % 16.4
Environmental Error (irreducible) ω2 37.6 11.8 % 6.1
Sampling error β̂ 0.2 0.1 % 0.7
Measurement error ∆ε 0.8 0.3 % 0.9
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Fig. 1. Comparison of radiosonde flights made at Beltsville and NWS-Sterling. Data pairs were matched
if they were within 3-hrs. The temperature difference and the standard deviation of the difference are
shown as absolute difference and in percent as well as the number of data pairs used at each layer.
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Fig. 1. Comparison of radiosonde flights made at Beltsville and NWS-Sterling. Data pairs were
matched if they were within 3 h. The temperature difference and the standard deviation of the
difference are shown as absolute difference and in percent as well as the number of data pairs
used at each layer.
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(mr) (rh)

(vWind) (t)

Fig. 2. Data profiles in Beltsville (bv) and Sterling (NWS). Top left: mixing ratio (mr); top right: relative
humidity (rh); bottom left: East-West wind component (vWind); bottom right: temperature (t).
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Fig. 2. Data profiles in Beltsville (bv) and Sterling (NWS). Top left panel: mixing ratio (mr);
top right panel: relative humidity (rh); bottom left panel: East-West wind component (vWind);
bottom right panel: temperature (t).
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(∆rh) (∆p)

Fig. 3. Collocation mismatch profiles given by differences BV-NWS. Left: relative humidity (∆rh);
right pressure (∆p).
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Fig. 3. Collocation mismatch profiles given by differences BV-NWS. Left panel: relative humidity
(∆rh); right panel: pressure (∆p).
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Fig. 4. The displacement of collocated trajectories is given by the distance among the positions of the two
collocated instruments at same altitude. X axis is distance along parallels and Y axis along meridians.
Distance range is 45− 95 km.

24

Fig. 4. The displacement of collocated trajectories is given by the distance among the positions
of the two collocated instruments at same altitude. x axis is distance along parallels and y axis
along meridians. Distance range is 45–95 km.
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Fig. 5. Beta functions for Beltsville relative humidity (rh) collocation drift model (10). Top left: Sterling
relative humidity

(
rh0
)
; top right: Sterling mixing ratio

(
mr0

)
; bottom left: difference in mixing ratio

(∆mr).
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Fig. 5. Beta functions for Beltsville collocation drift model of relative humidity (rh) given in
Eq. (10). Top left panel: Sterling relative humidity (rh0); top right panel: Sterling mixing ratio
(mr0); bottom left panel: difference in mixing ratio (∆mr).
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Fig. 6. Gamma functions of collocation error ω2 for relative humidity in Beltsville using model (11). Top
left: Sterling pressure

(
p0
)
; top right: Sterling temperature

(
t0
)
; bottom left: Sterling relative humidity(

rh0
)
; bottom right: difference in pressure (∆p). Figure 1 of 2.
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Fig. 6. Gamma functions of collocation error ω2 for relative humidity in Beltsville using model
given in Eq. (11). Top left panel: Sterling pressure (p0); top right panel: Sterling temperature
(t0); bottom left panel: Sterling relative humidity (rh0); bottom right panel: difference in pressure
(∆p).
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Fig. 7. Gamma functions of collocation error ω2 for relative humidity in Beltsville using model (11). Top
left: difference in longitude (∆lon); top right: difference in mixing ratio (∆mr); bottom left: difference
in wind, u-direction (∆u); bottom right: difference in wind, v-direction (∆v). Figure 2 of 2.
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Fig. 7. Gamma functions of collocation error ω2 for relative humidity in Beltsville using model
given in Eq. (11). Top left panel: difference in longitude (∆lon); top right panel: difference in
mixing ratio (∆mr); bottom left panel: difference in wind, u-direction (∆u); bottom right panel:
difference in wind, v -direction (∆v ).
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Fig. 8. Squareroot uncertainty budget
(
σ =
√
U
)

for relative humidity collocation mismatch. Natural

variability (σ∆µ), measurement error (σε), sampling error:
(
σβ̂

)
, irreducible environmental error (σω)

and reducible environmental error (σx).
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Fig. 8. Squareroot uncertainty budget (σ =
√

U) for relative humidity collocation mismatch. Nat-
ural variability (σ∆µ), measurement error (σε), sampling error: (σβ̂), irreducible environmental
error (σω) and reducible environmental error (σx ).
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